Microstructuring of p-Si(100) by localized electrochemical polishing using patterned agarose as a stamp

Li Zhang, Jin-Liang Zhuang, Xin-Zhou Ma, Jing Tang *, Zhao-Wu Tian

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Received 13 July 2007; received in revised form 25 July 2007; accepted 26 July 2007

Available online 3 August 2007

Abstract

Localization of electrochemical polishing using patterned agarose has been employed to fabricate microstructures on p-Si(100). The patterns were first transferred from a master to an agarose stamp, and then the microstructures were fabricated by limiting electrochemical polishing in the small contact area between the stamp and the workpiece. The gel stamp acts as the current flow channel between the working electrode and the counter electrode, simultaneously directing the electrolyte to the preferential parts of the Si workpiece. Microstructures fabricated by partial anodic dissolution on p-Si are approximately the same as those on the master. Lateral deviation of the fabricated microstructures from those on the master is approximately 2.6% and the electrochemical etching rate in HF is around several micrometers in an hour. This newly developed technique can be used as a low-cost and simple approach to fabricate microstructures on p-Si with high fidelity at a fast rate.

Keywords: Electrochemical polishing; Agarose stamp; Anodic dissolution; Silicon; Micromachining

1. Introduction

Silicon is an important semiconductor material used for producing solid-state electronic devices and is extensively applied in many micromechanical fields owing to its excellent engineering properties [1]. Recently, techniques using electrochemical etching have been employed to fabricate microstructures on Si [2–6]. The Si surface is first prepatterned with an oxide or nitride using a standard photolithographic process. To localize the electrochemical etching, factors such as the local electric field, surface passivation and mass transport are very complex. Very often, initial pore nucleation is an important and a pattern of pits is introduced onto the front side of the Si surface by photolithography and anisotropic chemical etching. This type of process requires relatively high initial and running costs, and hence there is great interest in developing novel techniques to confine the electrochemical process and then fabricate desired microstructures on Si. For example, scanning probe lithography (SPL) [7,8] and electrochemical micromachining (EMM) using nanosecond pulses [9] have been applied to produce structures down to micrometer or even nanometer scale. However, these techniques work mainly on a “point by point” direct basis, and hence are very time-consuming for fabrication of large-area microstructures. Recently, a new technique termed reactive wet stamping (r-WETS) was developed by Grzybowski et al. [10–12], which involves patterning of an agarose gel in bas relief for fabrication of microstructures on many materials. However, the best resolution of fabrication on Si by r-WETS was still around hundreds of nanometers, which was limited by the lateral diffusion of HF on the surface due to its very slow etch rate (2 nm/h) [13]. Hence the stamp and the substrate were often placed in a Petri dish containing light mineral oil, which could prevent lateral spreading of the etchant and limit the chemical etching to the contact area. Even though, the longer application time

* Corresponding author.
E-mail address: jingtang@xmu.edu.cn (J. Tang).
still makes the agarose gel denaturalize and prevent its future application on Si.

In this letter, the application of agarose stamp was extended to the electrochemical fabrication of microstructures for the first time. Many more applications that are related with the electrochemical process such as electrodeposition, electroadsorption etc. are expected to be developed. For instance, when it combines with the electrochemical etching, it provides more flexibility than chemical etching and it also overcomes the difficulty of erraticism and non-reproducibility in the chemical etching process. The agarose that has been soaked in a desired electrolyte before the microfabrication is employed as a patterned stamp. It can direct and supply the electrolyte to preferential parts of the Si wafer. Anodic dissolution progressively removes the Si substrate from the small contact area with the stamp. Then, using nominal pressure to maintain the contact, the stamp etches into the Si and approximately the same microstructure as on the master can be fabricated on the Si with high efficiency. This approach achieves two goals. First, it provides a good copy of the microstructures on the gel stamp at high efficiency, because of the fast rate of electrochemical etching. Second, the process requires no expensive instruments for the pre-experimental procedures and is suitable for fabricating large-scale microstructures at a low-cost. In preliminary experiments, p-type was preferred to n-type Si, since the apparatus for p-Si electrochemistry without an illumination apparatus is much simpler and its electrochemical etching is usually isotropic.

2. Experimental

Micropatterned gels were prepared from an aqueous solution of high-strength agarose (American AMRESCO, Biotechnology grade). First, a solution of agarose in water at weight ratios ranging from 1:8 to 1:12 was prepared by boiling in a beaker. A master with complex microstructures on a Si or Ti wafer was immersed in the solution. Air bubbles were removed by cooling under vacuum for 2 h. The gel can penetrate into the fine features of the master, such as small grooves or concave holes. The micropatterned gel was stripped carefully from the master to yield a stamp. Fabricated stamps were cut into rectangular blocks of 2 cm × 2 cm × 1 cm (height). The masters used here included Ti and Si with the patterns prepared by through mask electrochemical micromachining (EMM) [14,15] and inductively coupled plasma (ICP) [16,17], respectively. After peeling from the master, micropatterned gels were then soaked in HF etching solution (normally 0.6–0.8 mol/L) for 2 h. Prior to use, the gels were dried on filter paper for 10 min, and then under a stream of N₂ for 100 s.

The workpieces to be etched were p-Si(100) wafers (Huajing Electronic Corporation, Wuxi, China). Si wafers of 525 μm in thickness were boron-doped and had a resistivity of 10–15 Ω cm. Before mounting in the electrochemical cell, the Si wafer was cleaned with H₂SO₄ and H₂O₂ (4:1, w/w) and then covered with a thin Pt film (20 nm thick) on the backside to achieve a real ohmic contact. The native oxide layer was removed by dipping in 10% HF solution and then the workpiece was rinsed with ultrapure water. This treatment creates a hydrophobic silicon surface by forming hydrophobic Si–H bonds, which significantly helps to minimize lateral spreading of the etchant in the initial etching process and hence decreases micromachining deviation.

Electrochemical micromachining of p-silicon was performed in a specially designed three-electrode electrochemical cell as shown in the insert graph in Fig. 1. The stamp was placed upside down at the bottom of the electrochemical cell filled with a certain concentration of HF. The silicon workpiece is placed on top of the patterned gel as the working electrode. Only the part without patterning was immersed into the HF electrolyte. The polished side of the Si contacts the agarose stamp, which is far from the solution. This ensures that electropolishing is limited to the areas of contact between the stamp and the p-Si working electrode. A saturated calomel electrode (SCE) and a Pt circular ring are used as the reference electrode and the counter electrode, respectively. All electrochemical measurements and control of the working potential were performed using a CHI 631B electrochemical workstation. The microstructure of the mold and the etched workpiece were characterized using a confocal microscope (Olympus 2000).

3. Results and discussion

We started to apply anodic potential of 1.5 V vs. SCE to p-Si in the electrochemical cell shown in the insert graph of Fig. 1. The gel has two other functions here: (1) it removes reaction products from the silicon–gel interface; and (2) it acts as the current flow channel between the working elec-
trode and the counter electrode. Fig. 1 also shows current–voltage curve for a p-Si (100) electrode placed on a micro-patterned gel soaked in 0.6 mol/L HF. The shape of the curve resembles the typical curve in HF acid [18] and the peak is marked with a dashed line. When the potential applied to the p-Si is more positive than 0.39 V ($U_{Si} > 0.39$ V), electropolishing of silicon takes place and the dissolution is homogeneous and leads to a bright and smooth surface. When the potential is more negative than 0.39 V, a porous silicon oxide layer grows. J_1 (the critical current density) marked in Fig. 1 indicates the transition between the two regimes. In our micromachining experiments, U_{Si} was chosen to exceed 1.0 V to ensure that electropolishing occurred. The area below the features of the stamp was etched in a stepwise manner by advancing the p-Si with respect to the stamp at a certain pressure. For longer application times, the etchant in the gel might diffuse laterally on the surface, but this is negligible after the initial dipping treatment in 10% HF solution to form hydrophobic Si–H bonds. During the etching process, the fast electrochemical etching rate also can prevent the lateral diffusion in some extent.

A stainless steel holder is placed on top of the Si work-piece to ensure conformal contact between the workpiece and the gel. This holder is controlled by an instrument comprising a stepping motor and a piezoelectric tube under computer control. The holder moves with a step size ranging from 50 nm to 50 μm. During the etching process, the force between the mold and the workpiece is detected by a linear variable differential transformer (LVDT) sensor and is always kept at approximately 6 ± 0.2 mN/cm². When the Si is electrochemically etched, the separation increases and thus the force decreases. Until the force decreases to a stable and comparatively low value, the piezotube is adjusted, so that it moves the Si wafer downward to maintain a force of 6 mN/cm². The value of the force must be below 30 mN/cm² to avoid a strong distortion of the gel.

Fig. 2 shows microstructures on p-Si(100) fabricated in HF solution at concentrations of 0.68–0.8 mol/L. Fig. 2a shows a microcavity array on p-Si fabricated by localized anodic dissolution in 0.68 mol/L HF for 8 h. The micropattern on the stamp is transferred from a titanium master with a hexagonal array of hemispherical cavities, which

![Fig. 2](image_url)
was fabricated by the through-mask EMM technique. The depth of a single cavity is approximately 12 μm and the etch rate is 1.5 μm/h, as measured from the right-hand image in Fig. 2a. Previously, the agarose stamp was applied to etch micropatterns on Si by r-WETS and yielded a very slow etch rate for Si in HF (2 nm/h) [13]. Thus, the electrochemical etching rate was much faster than the chemical etching rate, which prevented the stamp from drying out during the long etching process. Even more complex microstructures such as a gear wheel array (Fig. 2b) and curvilinear ridges (Fig. 2c) were fabricated in 0.8 mol/L HF with an etching time of 4 h. The depth of the gear was measured to be approximately 11 μm and the etch rate increased to 2.75 μm/h. The etching rate in 0.8 mol/L HF as shown in Fig. 2b and c is faster than the 1.5 μm/h for the microstructure shown in Fig. 2a. This can mainly be attributed to the effect of the higher HF concentration on the anodic dissolution rate of p-Si and it is also demonstrated that the rate of microfabrication can be adjusted by choosing a suitable concentration of HF.

In Fig. 3, lateral deviation of the fabricated ridges from those on the Si master prepared by inductively coupled plasma (ICP) was estimated by measuring the width of the ridges despite the slanted ridges of the side wall. The average width of the ridge shown in Fig. 3a is 77 μm, while that of the Si microstructure fabricated by electrochemical polishing is 81 μm. The deviation for the micromachining is approximately (81–77)/2/77 × 100% = 2.6%, which is due to minute distortion of the gel under pressure of approximately 6 ± 0.2 mN/cm² during approach of the Si wafer. However, the surface roughness (root mean square, RMS) is significantly lower. The surface roughness measured by AFM is 7.30 ± 2.0 nm over an area of 25 μm × 25 μm, which is better than the ICP (several micrometers) shown in Fig. 3a. This means that the technique combined with the electrochemical polishing process can be applied to the smoothing of rough semiconductor surfaces in the future. Here, we also observe the differences in the depth and the shape between the master and the microfabricated structure, since the workpiece of Si did not travel the same distance as the largest depth of the microstructures on the agarose stamp. For instance, the fabricated microstructures in Fig. 3 are convex features with a height around 10 μm and it is still much less than that of the ridges in the master (~100 μm). To achieve a completely negative copy of the agarose stamp, it would be essential for the workpiece to approach to the agarose stamp stepwisely till the whole microstructures on the stamp was replicated on the workpiece. A study of this is still under way in our laboratory.

4. Conclusion

In summary, we have shown that localized electropolishing using patterned agarose can be employed as a low-cost and simple technique to fabricate microstructures with high fidelity at a fast rate. This approach should be easy to extend to other materials with known electrochemical properties. This new electrochemical micromachining technique allows greater control over the fabrication quality and the location of the microstructures.

Acknowledgements

Support for this research by the National Science Foundation of China (No. 20503024), Fund of National Engineering Research Center for Optoelectronic Crystalline Materials (No. 2005DC105003) and the Natural Science Foundation of Fujian Province (No. E0520001) is gratefully acknowledged.

References