汤儆课题组的研究方向
课题组的研究方向(1)扫描探针显微镜在升温电催化体系成像研究。(2)各种纳米材料如金属框架化合物、二维纳米材料、一维纳米棒的合成并将其应用于光/电催化体系。(3)表面增强拉曼光谱应用于燃料电池催化剂的研究。
一、扫描探针显微镜在电化学体系中的温度成像研究
近些年来,电催化反应越来越成为科学研究的重点,它是指一种起到加速电极和电解质界面上的电荷转移的催化作用。良好的电催化剂具有高活性、高稳定性、高导电性的特点,影响电催化剂活性和稳定性的因素包括了其微观形貌和组成、 反应温度、反应压力和传质速率等。汤儆教授课题组研制了基于热电偶微电极技术的温度与电化学成像联用仪器,两个部分既可以单独工作,也可以联动工作,以方便地用于电化学热力学和动力学的研究。研制了温度与电化学图像同步控制和采集系统,该系统适用于电化学体系的高分辨的温度成像装置,在温度成像时性能指标上将获得优于±0.1℃的温度分辨率和亚微米的空间分辨率。课题组进一步研究具体体系中的重要过程,并提供原位的微区电化学和温度变化的信息并进行关联。利用温度对SECM的影响研究了Cu电极上的Br2的电化学过程和相关动力学参数。相关课题工作发表在Scientific Reports, 2017 ,7 : 43685
二、各种纳米材料如金属框架化合物、二维纳米材料、一维纳米棒的合成并将其应用于光/电催化体系
以十六烷基三甲基溴化铵(CTAB)为保护剂,用简单的水热法在CdS棒上负载金属性的CoS2,并进一步研究了不同含量以及不同尺寸的CoS2对CdS光催化析氢性能的影响。光催化测试结果表示,CoS2的尺寸在一定程度上会影响CoS2/CdS复合物的光催化产氢性能。采用TEM、XRD、XPS、PL等对CoS2/CdS复合物进行表征发现,当CoS2尺寸为8-10 nm时,所形成的0.5% CoS2/CdS复合物有着最高的产氢量,是单纯的CdS的13倍。这是因为在足够的光照条件下,CoS2与CdS之间的肖特基结使得CdS上电子更倾向于转移到CoS2上,有利于光生电子-空穴对的分离。而且通过选择合适的CoS2尺寸改变其功函数,可以更好地促进CdS上光生电子-空穴对的分离,最终增强CdS光催化产氢的性能。文章已发表
一步电化学氧化在氧化铟锡(ITO)玻璃上成功地沉积了一种基于苝四羧酸的有机半导体聚合物薄膜(PTCA)并用物理化学和光谱等方法对其进行充分表征。调节沉积时间可以控制沉积的薄膜的厚度。其最低未占据分子轨道(LUMO)(-2.1 eV)的能量高于ITO(-4.8 eV)的HOMO值,光学带隙(3.6 eV)小于ITO(3.7 eV)的值。PTCA薄膜负载到ITO玻璃上,创造了一种新型的光电阳极材料,显示出增强的光电流响应,提高了光电化学水氧化性能。不同厚度的PTCA薄膜阵列在中性溶液中可以通过扫描光电化学显微镜(SPECM)的基底产生-针尖收集(SG-TC)模式,快速筛选出不同厚度的PTCA薄膜阵列的光电化学性能。有趣的是,在不同厚度的PTCA薄膜阵列中,PTCA-600 s/ITO线在0.1M KCl溶液中产生最大光电流 (9.24 nA)。在相同的制备条件下,用薄膜修饰的ITO大片电极也可以证实SECM筛选的结果。此外,SPECM还可以通过竞争模式进一步验证PTCA薄膜的光生载流子转移机理。本工作为光电化学有机半导体材料的制备和筛选提供了新的思路。文章已发表
三、表面增强拉曼光谱应用于燃料电池催化剂的研究
电化学-表面增强拉曼光谱实际上是电化学技术和SERS技术的联用。一般通过电化学技术改变电极表面的电极电势,从而改变界面吸附分子的状态,同时通过SERS技术记录分子随电极电势变化的拉曼图谱。通过分析谱峰的强度、频率随电极电势的变化,指认分子在电极表面的吸附取向,分子的结构、覆盖度以及分子的反应变化等,还可以通过结合理论计算的方法验证指认的结果。采用原位电化学表面增强拉曼光谱(EC-SERS)和高频加热技术研究了甲酸(HCOOH)在不同温度下的电氧化。利用高频加热技术,可以在工作电极(热电偶微电极,TCME)表面于 1s 内调节至任一预设温度。采用循环伏安法和EC-SERS研究了HCOOH在 Au@Pt 纳米粒子表面的电氧化行为。循环伏安法表明,升高的温度提高了Au@ Pt/TCME对HCOOH氧化的催化活性。EC-SERS分析表明,随着温度的升高,Pt-C键的强度逐渐降低,表明高温有利于CO从Pt表面的氧化解吸,促进了催化反应。该工作可用于高温下HCOOH电氧化催化剂的筛选,也可用于变温下EC-SERS的其他研究。相关文章发表在Electrochimica Acta, 2018, 281, 323-328
课题组近几年的文章列表
(1)Ye Meng-wei , Li Yi , Wu Juan, Su Tong-yu , Zhang Jie , Tang Jing* . SECM screening of the catalytic activities of AuPd bimetallic patterns fabricated by electrochemical wet-stamping technique. Journal of Electroanalytical Chemistry 2016 , 772 :96-102
(2)Jiang Chao-yi , Zeng Xiang-zhou , Wu Bi-jun , Zeng Qiao , Pang, Wen-hui,Tang Jing*. Electrochemical co-deposition of reduced graphene oxide-gold nanocomposite on an ITO substrate and its application the detection of dopamine. Science China Chemistry 2017 , 60 :1-6
(3)Ling Yun, Xie Wen-Chang , Liu Guo-Kun , Yan Run-Wen , Wu, De Yin , Tang Jing*.The discovery of the hydrogen bond from p-Nitrothiophenol by Raman spectroscopy: Guideline for the thioalcohol molecule recognition tool. Scientific Reports 2016 , 6 :31981
(4)Jiang Li-Long , Zeng Xiang-zhou , Li Meng-kai.Wang Man-Qing, Su Tong-yu , Tian Xiao-Chun , Tang Jing*.Rapid electrochemical synthesis of HKUST-1 on indium tin oxide. RSC Advances 2017 , 7:9316-9320
(5)Pan He, Zhang Hai-ling, Lai Jun-hui , Gu Xiao-xin, Sun, Jian-jun, Tang Jing, Jin Tao. Integration of thermocouple microelectrode in the scanning electrochemical microscope at variable temperatures: simultaneous temperature and electrochemical imaging and its kinetic studies. Scientific Reports 2017 , 7 :43685
(6)Ling Yun, Xie Wen-Chang, Wang Wei-Li, Li Meng-Kai, Tang Jing*, Liu Guo-Kun , Yan Run-Wen , Wu De-Yin. Direct observation of 4-Nitrophenyl disulfide produced from p-Nitrothiophenol in air by Raman spectroscopy. Journal of Raman Spectroscopy 2017,49, 520-525
(7)Wen-Chang Xie, Yun Ling, Ya-Zhen Zhang, He Pan Guo –Kun Liu, Jing Tang*. In-situ electrochemical surface-enhanced Raman spectroscopy study of formic acid electrooxidation at variable temperatures by high-frequency heating technology. Electrochimica Acta 2018,281,323-328
(8)Bing Qing Qiu, Chen Xi Li, Xiaqiang Shen, Wei Li Wang, He Ren, Yi Li*, Jing Tang*. Revealing the size effect of metallic CoS2on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction. Appl. Cata. A 2020 Accepted.
(9)Chen Xi Li , Bing Qing Qiu , Wei Li Wang , Jin Liang Zhuang*, Jing Tang*, Electrochemical deposition of PTCA organic semiconductor thin film and screening by SPECM for the photoelectrochemical ability, Thin solid film. 2020 Accepted.
(10)Weili Wang, Bingqing Qiu, Chenxi Li, Xiaqiang Shen, Jing Tang*, Yi Li*, Guo kun Liu*. PVP Functionalized Marigold-like MoS2 as a New Electrocatalyst for Highly Efficient Electrochemical Hydrogen Evolution, Electrocatalysis, 2020, 11, 383
(11)Lijing Han, Jing Tang, Rong Yang, Qiaohua Wei*, Mingdeng Wei*. Stable Li-ion storage in Ge/N-doped carbon microsphere anodes, Nanoscale, 2021,13,5307-5315
(12)Xi Li , Jiaofeng Cai , Changgeng Wei , Wei Lin , Yi Li , Jing Tang *Conversion of MIL-101(Fe) encapsulating Pt nanoparticles structure to FePt intermetallic nanoparticles supported on carbon promotes formic acid electrooxidation,Electrochem. Comm. 2021,127,107054
(13) Jing Tang*, Pingfang Wu, Huanqing Sun, Haishun Jiang. Mo-doped BiVO4 Modified with NH2-MIL-88B (Fe) Cocatalyst Overlayer for Enhanced Photoelectrochemical Water Oxidation, Journal of Photochemistry and Photobiology A: Chemistry, 2022: 114049.
(14)Huanqing Sun, Xu Wang, Pingfang Wu, Haishun Jiang, Jing Tang*, Nonstoichiometric tungsten oxide nanosheets with abundant oxygen vacancies for defects-driven SERS sensing, Journal of Raman Spectroscopy, 2022; 1–10.
(15)Jing Tang*, Xiaoyun Ma, Jiaxing He, Xiangyue Liu, Mingde Li, Zr (IV) metal-organic framework based cadmium sulfide for enhanced photocatalytic water splitting, Journal of Environmental Chemical Engineering, 2022, 10(3): 107820.
(16)Xiangyue Liu, Ye Li, Yijun Liu, Sijun Li, Li Feng, Jinliang Zhuang*, Jing Tang*, Microwave-assisted synthesis of 2D Zr-MOF supported gold nanoparticles for the reduction of p-nitrophenol to 4-Acetoxyacetanilide. Journal of Alloys and Compounds, 2022, 922, 165939.
(17)HaishunJiang, WenjieChen, XuWang, Honglin Ma, YiLi*, JingTang*,Tailoring the oxygen vacancies and electronic structures of the hex-WO3 (100) crystal plane with heteroatoms for enhanced hydrogen evolution performance. Applied Surface Science 2023